Dalla geometria di Euclide alla geometria dell'universo. Geometria su sfera, cilindro, cono, pseudosfera

AA.VV. | Springer Verlag 2012

Attualmente non disponibile

A partire da

51,99 €

Descrizione

Il testo confronta con la usuale geometria del piano (euclidea) vari tipi di geometrie che si hanno su superfici note e meno note: geometria sulla sfera, sul cilindro, sul cono e sulla pseudosfera. L'idea di fondo è di giungere alla descrizione "intrinseca" di queste geometrie analizzando che cosa significa l'andare diritto su queste superficie (cioè l'idea di geodetica). Si giunge così a vari tipi di geometrie che si discostano da quella euclidea usuale: geometrie localmente euclidee (su cilindro e cono), geometria ellittica (sulla sfera), geometria iperbolica (sulla pseudosfera). Si scopre che la chiave di volta concettuale che distingue queste diverse geometrie è la nozione di curvatura gaussiana, rispettivamente nulla su piani, cilindri, coni; (costante) positiva sulla sfera e (costante) negativa sulla pseudosfera. In relazione a queste idee matematiche si sviluppano anche vari temi interdisciplinari: si studiano ad esempio le caratteristiche delle carte geografiche che rappresentano la Terra a partire dal problema di determinare la rotta migliore tra due località (porti, aeroporti).

Dettagli

  • Autore:
  • Editore:
  • Collana:
  • Anno edizione:
  • AA.VV.
  • Springer Verlag
  • Convergenze
  • 2012
  • In commercio dal:
  • Pagine:
  • Lingua:
  • EAN:
  • 6 settembre 2012
  • 206 p.
  • ITA
  • 9788847025738

Ti potrebbe interessare anche

Librerie di Roma | Dalla geometria di Euclide alla geometria dell'universo. Geometria su sfera, cilindro, cono, pseudosfera
logo regione